Permalink
See also Hyperbolic Identities.
Basic Functions
Let a and n be an arbitrary constants.
dxdadxdxn=0=nxn−1(power rule)
Exponential and Logarithmic Functions
Let b be an arbitrary positive constant.
dxdexdxdbxdxdlnxdxdlogbx=ex=bxlnb=x1=xlnb1for x>0for x>0
Trigonometric Functions
dxdsinxdxdcosxdxdtanxdxdcotxdxdsecxdxdcscx=cosx=−sinx=sec2x=−csc2x=secxtanx=−cscxcotx
Inverse Trigonometric Functions
Out of this list, the most important to remember are the formulas for the derivatives of arcsin and arctan.
dxdarcsinxdxdarccosxdxdarctanxdxdarccot xdxdarcsec xdxdarccsc x=1−x21=−1−x21=x2+11=−x2+11=∣x∣x2−11=−∣x∣x2−11
Hyperbolic Trigonometric Functions
Most calculus courses, including AP Calculus, do not cover these functions. You can ignore these if they are outside the scope of your class.
dxdsinhxdxdcoshxdxdtanhxdxdcoth xdxdsech xdxdcsch x=coshx=sinhx=sech2x=−csch2x=−sech xtanhx=−csch x coth x
Inverse Hyperbolic Trigonometric Functions
Most calculus courses, including AP Calculus, do not cover these functions. You can ignore these if they are outside the scope of your class.
dxdarcsinh xdxdarccosh xdxdarctanh xdxdarccoth xdxdarcsech xdxdarccsch x=x2+11=x2−11=1−x21=1−x21=−x1−x21=−∣x∣1+x21
General Properties and Function Combinations
Let f and g be arbitrary functions and let a and b be arbitrary constants.
dxd(af(x)±bg(x))dxdf(x)g(x)dxdg(x)f(x)dxdf(g(x))dxdf−1(x)=af′(x)±bg′(x)=f′(x)g(x)+f(x)g′(x)=(g(x))2f′(x)g(x)−f(x)g′(x)=f′(g(x))g′(x)=f′(f−1(x))1(linearity)(product rule)(quotient rule)(chain rule)(inverse func. thm.)