See also Trigonometric Identities. Instruction of hyperbolic functions in math classes in precalc and calculus classes is rare. Nonetheless, this reference page will prove to be useful should you require them. Let x, α (alpha), and β (beta) be arbitrary values (see Greek letters). Basic Relationships sinhxcoshxtanhxcothxsech xcsch x=2ex−e−x=2ex+e−x=coshxsinhx=cothx1=sinhxcoshx=tanhx1=coshx1=sinhx1(hyperbolic sine)(hyperbolic cosine)(hyperbolic tangent)(hyperbolic cotangent)(hyperbolic secant)(hyperbolic cosecant) Pythagorean Identities cosh2x−sinh2x=1tanh2x+sech2x=1coth2x−csch2x=1 Odd/Even Identities sinh(−x)cosh(−x)tanh(−x)sech(−x)csch(−x)coth(−x)=−sinhx=coshx=−tanhx=sech x=−csch x=−coth x Sum and Difference Formulas sinh(α±β)cosh(α±β)tanh(α±β)=sinhαcoshβ±coshαsinhβ=coshαcoshβ±sinhαsinhβ=1±tanhαtanhβtanhα±tanhβ Double-Value Formulas sinh2xcosh2xtanh2x=2sinhxcoshx=cosh2x+sinh2x=1+2sinh2=2cosh2x−1=1+tanh2x2tanhx Half-Value Formulas sinh2x=±2coshx−1cosh2x=±2coshx+1tanh2x=±coshx+1coshx−1