Permalink
See also Derivative Rules.
Basic Functions
Let a and n be an arbitrary constants.
∫a dx∫xn dx=ax+C=n+11 xn+1+C(power rule)
Exponential and Logarithmic Functions
Let b be an arbitrary positive constant.
∫ex dx∫bx dx∫x1 dx=ex+C=lnb1 bx+C=ln∣x∣+Cfor x=0
Trigonometric Functions
∫sinx dx∫cosx dx∫tanx dx∫cotx dx∫secx dx∫cscx dx∫sec2x dx∫csc2x dx∫secxtanx dx∫cscxcotx dx=−cosx+C=sinx+C=−ln∣cosx∣+C=ln∣sinx∣+C=ln∣secx+tanx∣+C=−ln∣cscx+cotx∣+C=tanx+C=−cotx+C=secx+C=−cscx+C
Inverse Trigonometric Functions
∫1−x21 dx∫x2+11 dx∫xx2−11 dx=arcsinx+C=arctanx+C={−arcsec x+C−arcsec x+Cif x>0if x<0
Hyperbolic Trigonometric Functions
Most calculus courses, including AP Calculus, do not cover these functions. You can ignore these if they are outside the scope of your class.
∫sinhx dx∫coshx dx∫tanhx dx∫coth x dx∫sech2 x dx∫csch2 x dx∫sech xtanhx dx∫csch x coth x dx=coshx+C=sinhx+C=ln∣coshx∣+C=ln∣sinhx∣+C=tanhx+C=−coth x+C=−sech x+C=−csch x+C
Inverse Hyperbolic Trigonometric Functions
Most calculus courses, including AP Calculus, do not cover these functions. You can ignore these if they are outside the scope of your class.
∫x2+11 dx∫x2−11 dx∫1−x21 dx∫x1−x21 dx∫x1+x21 dx=arcsinh x+C=arccosh x+C=arctanh x+C=−arcsech x+C={−arccsch x+C−arccsch x+Cif x>0if x<0
General Properties and Function Combinations
Let f and g be arbitrary functions and let a and b be arbitrary constants.
∫af(x)±bg(x) dx∫f′(g(x))g′(x) dx∫f′(x)g(x) dx=a∫f(x) dx±b∫g(x) dx=f(g(x))+C=f(x)g(x)−∫f(x)g′(x) dx(linearity)(u-sub.)(int. by parts)
If f is an even function and a is an arbitrary constant, then
∫a−af(x) dx=2∫0af(x) dx.
If f is an odd function and a is an arbitrary constant, then
∫−aaf(x) dx=0.